MakeItFrom.com
Menu (ESC)

C19025 Copper vs. ASTM Grade HG10 MNN Steel

C19025 copper belongs to the copper alloys classification, while ASTM grade HG10 MNN steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C19025 copper and the bottom bar is ASTM grade HG10 MNN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 17
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 480 to 620
590

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 1020
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 40
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
21
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
4.0
Embodied Energy, MJ/kg 44
58
Embodied Water, L/kg 320
160

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 15 to 19
21
Strength to Weight: Bending, points 15 to 18
20
Thermal Diffusivity, mm2/s 47
3.9
Thermal Shock Resistance, points 17 to 22
13

Alloy Composition

Carbon (C), % 0
0.070 to 0.11
Chromium (Cr), % 0
18.5 to 20.5
Copper (Cu), % 97.1 to 98.5
0 to 0.5
Iron (Fe), % 0
57.9 to 66.5
Manganese (Mn), % 0
3.0 to 5.0
Molybdenum (Mo), % 0
0.25 to 0.45
Nickel (Ni), % 0.8 to 1.2
11.5 to 13.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0.030 to 0.070
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.7 to 1.1
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.3
0