MakeItFrom.com
Menu (ESC)

C19025 Copper vs. N10675 Nickel

C19025 copper belongs to the copper alloys classification, while N10675 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19025 copper and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220
Elongation at Break, % 8.0 to 17
47
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
85
Shear Strength, MPa 300 to 360
610
Tensile Strength: Ultimate (UTS), MPa 480 to 620
860

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
910
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 1020
1370
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 160
11
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 40
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
80
Density, g/cm3 8.9
9.3
Embodied Carbon, kg CO2/kg material 2.8
16
Embodied Energy, MJ/kg 44
210
Embodied Water, L/kg 320
280

Common Calculations

Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
22
Strength to Weight: Axial, points 15 to 19
26
Strength to Weight: Bending, points 15 to 18
22
Thermal Diffusivity, mm2/s 47
3.1
Thermal Shock Resistance, points 17 to 22
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 97.1 to 98.5
0 to 0.2
Iron (Fe), % 0
1.0 to 3.0
Manganese (Mn), % 0
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0.8 to 1.2
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0.030 to 0.070
0 to 0.030
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Tin (Sn), % 0.7 to 1.1
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0 to 0.3
0