MakeItFrom.com
Menu (ESC)

C19100 Copper vs. AISI 310 Stainless Steel

C19100 copper belongs to the copper alloys classification, while AISI 310 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19100 copper and the bottom bar is AISI 310 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 17 to 37
34 to 45
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
78
Shear Strength, MPa 170 to 330
420 to 470
Tensile Strength: Ultimate (UTS), MPa 250 to 630
600 to 710
Tensile Strength: Yield (Proof), MPa 75 to 550
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1040
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 250
15
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 56
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
25
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
4.3
Embodied Energy, MJ/kg 43
61
Embodied Water, L/kg 310
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60 to 99
200 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 1310
170 to 310
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.7 to 20
21 to 25
Strength to Weight: Bending, points 9.9 to 18
20 to 22
Thermal Diffusivity, mm2/s 73
3.9
Thermal Shock Resistance, points 8.9 to 22
14 to 17

Alloy Composition

Carbon (C), % 0
0 to 0.25
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 96.5 to 98.6
0
Iron (Fe), % 0 to 0.2
48.2 to 57
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0.9 to 1.3
19 to 22
Phosphorus (P), % 0.15 to 0.35
0 to 0.045
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tellurium (Te), % 0.35 to 0.6
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0