MakeItFrom.com
Menu (ESC)

C19100 Copper vs. AISI 348H Stainless Steel

C19100 copper belongs to the copper alloys classification, while AISI 348H stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C19100 copper and the bottom bar is AISI 348H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 17 to 37
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 170 to 330
400
Tensile Strength: Ultimate (UTS), MPa 250 to 630
580
Tensile Strength: Yield (Proof), MPa 75 to 550
230

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
940
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 250
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 56
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 33
20
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.9
Embodied Energy, MJ/kg 43
56
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60 to 99
190
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 1310
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.7 to 20
21
Strength to Weight: Bending, points 9.9 to 18
20
Thermal Diffusivity, mm2/s 73
4.1
Thermal Shock Resistance, points 8.9 to 22
13

Alloy Composition

Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
17 to 19
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 96.5 to 98.6
0
Iron (Fe), % 0 to 0.2
63.8 to 73.6
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0.9 to 1.3
9.0 to 13
Niobium (Nb), % 0
0.32 to 1.0
Phosphorus (P), % 0.15 to 0.35
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.1
Tellurium (Te), % 0.35 to 0.6
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0