MakeItFrom.com
Menu (ESC)

C19100 Copper vs. AISI 403 Stainless Steel

C19100 copper belongs to the copper alloys classification, while AISI 403 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C19100 copper and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 17 to 37
16 to 25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 170 to 330
340 to 480
Tensile Strength: Ultimate (UTS), MPa 250 to 630
530 to 780
Tensile Strength: Yield (Proof), MPa 75 to 550
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
740
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 250
28
Thermal Expansion, µm/m-K 17
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 56
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
6.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.9
Embodied Energy, MJ/kg 43
27
Embodied Water, L/kg 310
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60 to 99
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 1310
210 to 840
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.7 to 20
19 to 28
Strength to Weight: Bending, points 9.9 to 18
19 to 24
Thermal Diffusivity, mm2/s 73
7.6
Thermal Shock Resistance, points 8.9 to 22
20 to 29

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13
Copper (Cu), % 96.5 to 98.6
0
Iron (Fe), % 0 to 0.2
84.7 to 88.5
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0.9 to 1.3
0 to 0.6
Phosphorus (P), % 0.15 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tellurium (Te), % 0.35 to 0.6
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0