MakeItFrom.com
Menu (ESC)

C19100 Copper vs. ASTM A369 Grade FP9

C19100 copper belongs to the copper alloys classification, while ASTM A369 grade FP9 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19100 copper and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 17 to 37
20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Shear Strength, MPa 170 to 330
300
Tensile Strength: Ultimate (UTS), MPa 250 to 630
470
Tensile Strength: Yield (Proof), MPa 75 to 550
240

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
600
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 250
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 55
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 56
10

Otherwise Unclassified Properties

Base Metal Price, % relative 33
6.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 43
28
Embodied Water, L/kg 310
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 60 to 99
80
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 1310
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.7 to 20
17
Strength to Weight: Bending, points 9.9 to 18
17
Thermal Diffusivity, mm2/s 73
6.9
Thermal Shock Resistance, points 8.9 to 22
13

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 96.5 to 98.6
0
Iron (Fe), % 0 to 0.2
87.1 to 90.3
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0.9 to 1.3
0
Phosphorus (P), % 0.15 to 0.35
0 to 0.030
Silicon (Si), % 0
0.5 to 1.0
Sulfur (S), % 0
0 to 0.030
Tellurium (Te), % 0.35 to 0.6
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0