MakeItFrom.com
Menu (ESC)

C19100 Copper vs. AWS E33-31

C19100 copper belongs to the copper alloys classification, while AWS E33-31 belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is C19100 copper and the bottom bar is AWS E33-31.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 17 to 37
29
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
81
Tensile Strength: Ultimate (UTS), MPa 250 to 630
810

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Melting Completion (Liquidus), °C 1080
1380
Melting Onset (Solidus), °C 1040
1330
Specific Heat Capacity, J/kg-K 390
480
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 33
36
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
6.0
Embodied Energy, MJ/kg 43
86
Embodied Water, L/kg 310
260

Common Calculations

Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.7 to 20
28
Strength to Weight: Bending, points 9.9 to 18
24
Thermal Shock Resistance, points 8.9 to 22
19

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
31 to 35
Copper (Cu), % 96.5 to 98.6
0.4 to 0.8
Iron (Fe), % 0 to 0.2
24.7 to 34.8
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0.9 to 1.3
30 to 32
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0.15 to 0.35
0 to 0.020
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0.35 to 0.6
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.5
0