MakeItFrom.com
Menu (ESC)

C19200 Copper vs. EN 1.8505 Steel

C19200 copper belongs to the copper alloys classification, while EN 1.8505 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19200 copper and the bottom bar is EN 1.8505 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.0 to 35
13
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 190 to 300
630
Tensile Strength: Ultimate (UTS), MPa 280 to 530
1050
Tensile Strength: Yield (Proof), MPa 98 to 510
860

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
440
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1080
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 240
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 74
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 75
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.6
Embodied Energy, MJ/kg 41
22
Embodied Water, L/kg 310
65

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 98
120
Resilience: Unit (Modulus of Resilience), kJ/m3 42 to 1120
1950
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8 to 17
37
Strength to Weight: Bending, points 11 to 16
30
Thermal Diffusivity, mm2/s 69
11
Thermal Shock Resistance, points 10 to 19
31

Alloy Composition

Aluminum (Al), % 0
0.8 to 1.2
Carbon (C), % 0
0.28 to 0.35
Chromium (Cr), % 0
1.5 to 1.8
Copper (Cu), % 98.5 to 99.19
0
Iron (Fe), % 0.8 to 1.2
95.4 to 97.1
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0.2 to 0.4
Phosphorus (P), % 0.010 to 0.040
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0