MakeItFrom.com
Menu (ESC)

C19200 Copper vs. C68400 Brass

Both C19200 copper and C68400 brass are copper alloys. They have 62% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C19200 copper and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.0 to 35
18
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 44
41
Shear Strength, MPa 190 to 300
330
Tensile Strength: Ultimate (UTS), MPa 280 to 530
540
Tensile Strength: Yield (Proof), MPa 98 to 510
310

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 1080
840
Melting Onset (Solidus), °C 1080
820
Specific Heat Capacity, J/kg-K 390
400
Thermal Conductivity, W/m-K 240
66
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 74
87
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 75
99

Otherwise Unclassified Properties

Base Metal Price, % relative 30
23
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
47
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 98
81
Resilience: Unit (Modulus of Resilience), kJ/m3 42 to 1120
460
Stiffness to Weight: Axial, points 7.2
7.5
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 8.8 to 17
19
Strength to Weight: Bending, points 11 to 16
19
Thermal Diffusivity, mm2/s 69
21
Thermal Shock Resistance, points 10 to 19
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Copper (Cu), % 98.5 to 99.19
59 to 64
Iron (Fe), % 0.8 to 1.2
0 to 1.0
Lead (Pb), % 0 to 0.030
0 to 0.090
Manganese (Mn), % 0
0.2 to 1.5
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0.010 to 0.040
0.030 to 0.3
Silicon (Si), % 0
1.5 to 2.5
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0 to 0.2
28.6 to 39.3
Residuals, % 0
0 to 0.5