MakeItFrom.com
Menu (ESC)

C19200 Copper vs. C87700 Bronze

Both C19200 copper and C87700 bronze are copper alloys. They have 89% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C19200 copper and the bottom bar is C87700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.0 to 35
3.6
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
42
Tensile Strength: Ultimate (UTS), MPa 280 to 530
300
Tensile Strength: Yield (Proof), MPa 98 to 510
120

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1080
980
Melting Onset (Solidus), °C 1080
900
Specific Heat Capacity, J/kg-K 390
400
Thermal Conductivity, W/m-K 240
120
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 74
45
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 75
48

Otherwise Unclassified Properties

Base Metal Price, % relative 30
29
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
45
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 98
8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 42 to 1120
64
Stiffness to Weight: Axial, points 7.2
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 8.8 to 17
9.8
Strength to Weight: Bending, points 11 to 16
12
Thermal Diffusivity, mm2/s 69
34
Thermal Shock Resistance, points 10 to 19
11

Alloy Composition

Antimony (Sb), % 0
0 to 0.1
Copper (Cu), % 98.5 to 99.19
87.5 to 90.5
Iron (Fe), % 0.8 to 1.2
0 to 0.5
Lead (Pb), % 0 to 0.030
0 to 0.090
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0
0 to 0.25
Phosphorus (P), % 0.010 to 0.040
0 to 0.15
Silicon (Si), % 0
2.5 to 3.5
Tin (Sn), % 0
0 to 2.0
Zinc (Zn), % 0 to 0.2
7.0 to 9.0
Residuals, % 0
0 to 0.8