MakeItFrom.com
Menu (ESC)

C19200 Copper vs. S20433 Stainless Steel

C19200 copper belongs to the copper alloys classification, while S20433 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19200 copper and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.0 to 35
46
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 38 to 76
82
Shear Modulus, GPa 44
76
Shear Strength, MPa 190 to 300
440
Tensile Strength: Ultimate (UTS), MPa 280 to 530
630
Tensile Strength: Yield (Proof), MPa 98 to 510
270

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
900
Melting Completion (Liquidus), °C 1080
1400
Melting Onset (Solidus), °C 1080
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 240
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 74
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 75
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
39
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 98
230
Resilience: Unit (Modulus of Resilience), kJ/m3 42 to 1120
180
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.8 to 17
23
Strength to Weight: Bending, points 11 to 16
21
Thermal Diffusivity, mm2/s 69
4.0
Thermal Shock Resistance, points 10 to 19
14

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 98.5 to 99.19
1.5 to 3.5
Iron (Fe), % 0.8 to 1.2
64.1 to 72.4
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0.010 to 0.040
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0