MakeItFrom.com
Menu (ESC)

C19400 Copper vs. 380.0 Aluminum

C19400 copper belongs to the copper alloys classification, while 380.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C19400 copper and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
74
Elongation at Break, % 2.3 to 37
3.0
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
28
Shear Strength, MPa 210 to 300
190
Tensile Strength: Ultimate (UTS), MPa 310 to 630
320
Tensile Strength: Yield (Proof), MPa 98 to 520
160

Thermal Properties

Latent Heat of Fusion, J/g 210
510
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
590
Melting Onset (Solidus), °C 1080
540
Specific Heat Capacity, J/kg-K 390
870
Thermal Conductivity, W/m-K 260
100
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 68
27
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 69
83

Otherwise Unclassified Properties

Base Metal Price, % relative 30
10
Density, g/cm3 8.9
2.9
Embodied Carbon, kg CO2/kg material 2.6
7.5
Embodied Energy, MJ/kg 40
140
Embodied Water, L/kg 300
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
170
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
48
Strength to Weight: Axial, points 9.7 to 20
31
Strength to Weight: Bending, points 11 to 18
36
Thermal Diffusivity, mm2/s 75
40
Thermal Shock Resistance, points 11 to 22
14

Alloy Composition

Aluminum (Al), % 0
79.6 to 89.5
Copper (Cu), % 96.8 to 97.8
3.0 to 4.0
Iron (Fe), % 2.1 to 2.6
0 to 2.0
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0.015 to 0.15
0
Silicon (Si), % 0
7.5 to 9.5
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0.050 to 0.2
0 to 3.0
Residuals, % 0
0 to 0.5