MakeItFrom.com
Menu (ESC)

C19400 Copper vs. 6008 Aluminum

C19400 copper belongs to the copper alloys classification, while 6008 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C19400 copper and the bottom bar is 6008 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 2.3 to 37
9.1 to 17
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
26
Shear Strength, MPa 210 to 300
120 to 170
Tensile Strength: Ultimate (UTS), MPa 310 to 630
200 to 290
Tensile Strength: Yield (Proof), MPa 98 to 520
100 to 220

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1090
640
Melting Onset (Solidus), °C 1080
620
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 260
190
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 68
49
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 69
160

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 2.6
8.5
Embodied Energy, MJ/kg 40
160
Embodied Water, L/kg 300
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
24 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
76 to 360
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
50
Strength to Weight: Axial, points 9.7 to 20
21 to 29
Strength to Weight: Bending, points 11 to 18
28 to 35
Thermal Diffusivity, mm2/s 75
77
Thermal Shock Resistance, points 11 to 22
9.0 to 13

Alloy Composition

Aluminum (Al), % 0
96.5 to 99.1
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 96.8 to 97.8
0 to 0.3
Iron (Fe), % 2.1 to 2.6
0 to 0.35
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0
0 to 0.3
Phosphorus (P), % 0.015 to 0.15
0
Silicon (Si), % 0
0.5 to 0.9
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0.050 to 0.2
0 to 0.2
Residuals, % 0
0 to 0.15