MakeItFrom.com
Menu (ESC)

C19400 Copper vs. 7050 Aluminum

C19400 copper belongs to the copper alloys classification, while 7050 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C19400 copper and the bottom bar is 7050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 2.3 to 37
2.2 to 12
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 44
26
Shear Strength, MPa 210 to 300
280 to 330
Tensile Strength: Ultimate (UTS), MPa 310 to 630
490 to 570
Tensile Strength: Yield (Proof), MPa 98 to 520
390 to 500

Thermal Properties

Latent Heat of Fusion, J/g 210
370
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 1090
630
Melting Onset (Solidus), °C 1080
490
Specific Heat Capacity, J/kg-K 390
860
Thermal Conductivity, W/m-K 260
140
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 68
35
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 69
100

Otherwise Unclassified Properties

Base Metal Price, % relative 30
10
Density, g/cm3 8.9
3.1
Embodied Carbon, kg CO2/kg material 2.6
8.2
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 300
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
10 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
1110 to 1760
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
45
Strength to Weight: Axial, points 9.7 to 20
45 to 51
Strength to Weight: Bending, points 11 to 18
45 to 50
Thermal Diffusivity, mm2/s 75
54
Thermal Shock Resistance, points 11 to 22
21 to 25

Alloy Composition

Aluminum (Al), % 0
87.3 to 92.1
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 96.8 to 97.8
2.0 to 2.6
Iron (Fe), % 2.1 to 2.6
0 to 0.15
Lead (Pb), % 0 to 0.030
0
Magnesium (Mg), % 0
1.9 to 2.6
Manganese (Mn), % 0
0 to 0.1
Phosphorus (P), % 0.015 to 0.15
0
Silicon (Si), % 0
0 to 0.12
Titanium (Ti), % 0
0 to 0.060
Zinc (Zn), % 0.050 to 0.2
5.7 to 6.7
Zirconium (Zr), % 0
0.080 to 0.15
Residuals, % 0
0 to 0.15