MakeItFrom.com
Menu (ESC)

C19400 Copper vs. EN 1.4525 Stainless Steel

C19400 copper belongs to the copper alloys classification, while EN 1.4525 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19400 copper and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.3 to 37
5.6 to 13
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 310 to 630
1030 to 1250
Tensile Strength: Yield (Proof), MPa 98 to 520
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
860
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1080
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 260
18
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 68
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 69
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 40
39
Embodied Water, L/kg 300
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
1820 to 3230
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.7 to 20
36 to 45
Strength to Weight: Bending, points 11 to 18
29 to 33
Thermal Diffusivity, mm2/s 75
4.7
Thermal Shock Resistance, points 11 to 22
34 to 41

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 96.8 to 97.8
2.5 to 4.0
Iron (Fe), % 2.1 to 2.6
70.4 to 79
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0
3.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0.015 to 0.15
0 to 0.035
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0.050 to 0.2
0
Residuals, % 0 to 0.2
0

Comparable Variants