MakeItFrom.com
Menu (ESC)

C19400 Copper vs. EN 1.4869 Casting Alloy

C19400 copper belongs to the copper alloys classification, while EN 1.4869 casting alloy belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19400 copper and the bottom bar is EN 1.4869 casting alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.3 to 37
5.7
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
80
Tensile Strength: Ultimate (UTS), MPa 310 to 630
540
Tensile Strength: Yield (Proof), MPa 98 to 520
310

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
1200
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1080
1390
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 260
10
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 30
70
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
7.7
Embodied Energy, MJ/kg 40
110
Embodied Water, L/kg 300
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
26
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
230
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 9.7 to 20
18
Strength to Weight: Bending, points 11 to 18
17
Thermal Diffusivity, mm2/s 75
2.6
Thermal Shock Resistance, points 11 to 22
14

Alloy Composition

Carbon (C), % 0
0.45 to 0.55
Chromium (Cr), % 0
24 to 26
Cobalt (Co), % 0
14 to 16
Copper (Cu), % 96.8 to 97.8
0
Iron (Fe), % 2.1 to 2.6
11.4 to 23.6
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0.015 to 0.15
0 to 0.040
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 0.050 to 0.2
0
Residuals, % 0 to 0.2
0