MakeItFrom.com
Menu (ESC)

C19400 Copper vs. CC382H Copper-nickel

Both C19400 copper and CC382H copper-nickel are copper alloys. They have 66% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19400 copper and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
140
Elongation at Break, % 2.3 to 37
20
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
53
Tensile Strength: Ultimate (UTS), MPa 310 to 630
490
Tensile Strength: Yield (Proof), MPa 98 to 520
290

Thermal Properties

Latent Heat of Fusion, J/g 210
240
Maximum Temperature: Mechanical, °C 200
260
Melting Completion (Liquidus), °C 1090
1180
Melting Onset (Solidus), °C 1080
1120
Specific Heat Capacity, J/kg-K 390
410
Thermal Conductivity, W/m-K 260
30
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 68
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 69
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
41
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
5.2
Embodied Energy, MJ/kg 40
76
Embodied Water, L/kg 300
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
85
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
290
Stiffness to Weight: Axial, points 7.3
8.8
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 9.7 to 20
15
Strength to Weight: Bending, points 11 to 18
16
Thermal Diffusivity, mm2/s 75
8.2
Thermal Shock Resistance, points 11 to 22
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 96.8 to 97.8
62.8 to 68.4
Iron (Fe), % 2.1 to 2.6
0.5 to 1.0
Lead (Pb), % 0 to 0.030
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0
0.5 to 1.0
Nickel (Ni), % 0
29 to 32
Phosphorus (P), % 0.015 to 0.15
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0.050 to 0.2
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.2
0