MakeItFrom.com
Menu (ESC)

C19400 Copper vs. Grade CW6MC Nickel

C19400 copper belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19400 copper and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.3 to 37
28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
79
Tensile Strength: Ultimate (UTS), MPa 310 to 630
540
Tensile Strength: Yield (Proof), MPa 98 to 520
310

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1090
1480
Melting Onset (Solidus), °C 1080
1430
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 260
11
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 68
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 69
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
80
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 2.6
14
Embodied Energy, MJ/kg 40
200
Embodied Water, L/kg 300
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
130
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
240
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 9.7 to 20
18
Strength to Weight: Bending, points 11 to 18
17
Thermal Diffusivity, mm2/s 75
2.8
Thermal Shock Resistance, points 11 to 22
15

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 96.8 to 97.8
0
Iron (Fe), % 2.1 to 2.6
0 to 5.0
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0.015 to 0.15
0 to 0.015
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0.050 to 0.2
0
Residuals, % 0 to 0.2
0