MakeItFrom.com
Menu (ESC)

C19400 Copper vs. C82000 Copper

Both C19400 copper and C82000 copper are copper alloys. They have a very high 97% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19400 copper and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.3 to 37
8.0 to 20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
45
Tensile Strength: Ultimate (UTS), MPa 310 to 630
350 to 690
Tensile Strength: Yield (Proof), MPa 98 to 520
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 210
220
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1090
1090
Melting Onset (Solidus), °C 1080
970
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 260
260
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 68
45
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 69
46

Otherwise Unclassified Properties

Base Metal Price, % relative 30
60
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
5.0
Embodied Energy, MJ/kg 40
77
Embodied Water, L/kg 300
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
80 to 1120
Stiffness to Weight: Axial, points 7.3
7.5
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.7 to 20
11 to 22
Strength to Weight: Bending, points 11 to 18
12 to 20
Thermal Diffusivity, mm2/s 75
76
Thermal Shock Resistance, points 11 to 22
12 to 24

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 96.8 to 97.8
95.2 to 97.4
Iron (Fe), % 2.1 to 2.6
0 to 0.1
Lead (Pb), % 0 to 0.030
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0.015 to 0.15
0
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0.050 to 0.2
0 to 0.1
Residuals, % 0
0 to 0.5