MakeItFrom.com
Menu (ESC)

C19400 Copper vs. R30035 Cobalt

C19400 copper belongs to the copper alloys classification, while R30035 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19400 copper and the bottom bar is R30035 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220 to 230
Elongation at Break, % 2.3 to 37
9.0 to 46
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
84 to 89
Tensile Strength: Ultimate (UTS), MPa 310 to 630
900 to 1900
Tensile Strength: Yield (Proof), MPa 98 to 520
300 to 1650

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Melting Completion (Liquidus), °C 1090
1440
Melting Onset (Solidus), °C 1080
1320
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 260
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 68
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 69
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
100
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.6
10
Embodied Energy, MJ/kg 40
140
Embodied Water, L/kg 300
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
160 to 320
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
210 to 5920
Stiffness to Weight: Axial, points 7.3
14 to 15
Stiffness to Weight: Bending, points 18
23 to 24
Strength to Weight: Axial, points 9.7 to 20
29 to 61
Strength to Weight: Bending, points 11 to 18
24 to 39
Thermal Diffusivity, mm2/s 75
3.0
Thermal Shock Resistance, points 11 to 22
23 to 46

Alloy Composition

Boron (B), % 0
0 to 0.015
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
29.1 to 39
Copper (Cu), % 96.8 to 97.8
0
Iron (Fe), % 2.1 to 2.6
0 to 1.0
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0 to 0.15
Molybdenum (Mo), % 0
9.0 to 10.5
Nickel (Ni), % 0
33 to 37
Phosphorus (P), % 0.015 to 0.15
0 to 0.015
Silicon (Si), % 0
0 to 0.15
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 1.0
Zinc (Zn), % 0.050 to 0.2
0
Residuals, % 0 to 0.2
0