MakeItFrom.com
Menu (ESC)

C19400 Copper vs. R30155 Cobalt

C19400 copper belongs to the copper alloys classification, while R30155 cobalt belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C19400 copper and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.3 to 37
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
81
Shear Strength, MPa 210 to 300
570
Tensile Strength: Ultimate (UTS), MPa 310 to 630
850
Tensile Strength: Yield (Proof), MPa 98 to 520
390

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1470
Melting Onset (Solidus), °C 1080
1420
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 260
12
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 30
80
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
9.7
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 300
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
230
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
370
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 9.7 to 20
28
Strength to Weight: Bending, points 11 to 18
24
Thermal Diffusivity, mm2/s 75
3.2
Thermal Shock Resistance, points 11 to 22
21

Alloy Composition

Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 96.8 to 97.8
0
Iron (Fe), % 2.1 to 2.6
24.3 to 36.2
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0.015 to 0.15
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0.050 to 0.2
0
Residuals, % 0 to 0.2
0