MakeItFrom.com
Menu (ESC)

C19400 Copper vs. S30815 Stainless Steel

C19400 copper belongs to the copper alloys classification, while S30815 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C19400 copper and the bottom bar is S30815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.3 to 37
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 210 to 300
480
Tensile Strength: Ultimate (UTS), MPa 310 to 630
680
Tensile Strength: Yield (Proof), MPa 98 to 520
350

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1020
Melting Completion (Liquidus), °C 1090
1400
Melting Onset (Solidus), °C 1080
1360
Specific Heat Capacity, J/kg-K 390
490
Thermal Conductivity, W/m-K 260
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 58 to 68
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 58 to 69
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
17
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.3
Embodied Energy, MJ/kg 40
47
Embodied Water, L/kg 300
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5 to 220
260
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 1140
310
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.7 to 20
25
Strength to Weight: Bending, points 11 to 18
22
Thermal Diffusivity, mm2/s 75
4.0
Thermal Shock Resistance, points 11 to 22
15

Alloy Composition

Carbon (C), % 0
0.050 to 0.1
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 96.8 to 97.8
0
Iron (Fe), % 2.1 to 2.6
62.8 to 68.4
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0
10 to 12
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0.015 to 0.15
0 to 0.040
Silicon (Si), % 0
1.4 to 2.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0.050 to 0.2
0
Residuals, % 0 to 0.2
0