MakeItFrom.com
Menu (ESC)

C19500 Copper vs. AISI 440A Stainless Steel

C19500 copper belongs to the copper alloys classification, while AISI 440A stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is AISI 440A stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.3 to 38
5.0 to 20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 260 to 360
450 to 1040
Tensile Strength: Ultimate (UTS), MPa 380 to 640
730 to 1790
Tensile Strength: Yield (Proof), MPa 120 to 600
420 to 1650

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
760
Melting Completion (Liquidus), °C 1090
1480
Melting Onset (Solidus), °C 1090
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 200
23
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.0
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 42
31
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
87 to 120
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 20
26 to 65
Strength to Weight: Bending, points 13 to 18
23 to 43
Thermal Diffusivity, mm2/s 58
6.2
Thermal Shock Resistance, points 13 to 23
26 to 65

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0
0.6 to 0.75
Chromium (Cr), % 0
16 to 18
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
0
Iron (Fe), % 1.0 to 2.0
78.4 to 83.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0.010 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0