MakeItFrom.com
Menu (ESC)

C19500 Copper vs. AISI W2 Steel

C19500 copper belongs to the copper alloys classification, while AISI W2 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is AISI W2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
72
Tensile Strength: Ultimate (UTS), MPa 380 to 640
580 to 2400

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1090
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 200
45
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.3
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 42
29
Embodied Water, L/kg 310
48

Common Calculations

Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
21 to 86
Strength to Weight: Bending, points 13 to 18
20 to 51
Thermal Diffusivity, mm2/s 58
12
Thermal Shock Resistance, points 13 to 23
19 to 80

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0
0.85 to 1.5
Chromium (Cr), % 0
0 to 0.15
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
0 to 0.2
Iron (Fe), % 1.0 to 2.0
96.2 to 98.6
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.35 to 0.74
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0.010 to 0.35
0 to 0.025
Silicon (Si), % 0
0.1 to 0.4
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.1 to 1.0
0
Tungsten (W), % 0
0 to 0.15
Vanadium (V), % 0
0.15 to 0.35
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0