MakeItFrom.com
Menu (ESC)

C19500 Copper vs. ASTM A36 Carbon Steel

C19500 copper belongs to the copper alloys classification, while ASTM A36 carbon steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is ASTM A36 carbon steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.3 to 38
22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 260 to 360
300
Tensile Strength: Ultimate (UTS), MPa 380 to 640
480
Tensile Strength: Yield (Proof), MPa 120 to 600
290

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1090
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 200
50
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
12
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 42
18
Embodied Water, L/kg 310
44

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
92
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
220
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
17
Strength to Weight: Bending, points 13 to 18
17
Thermal Diffusivity, mm2/s 58
14
Thermal Shock Resistance, points 13 to 23
16

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0
0 to 0.26
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
0
Iron (Fe), % 1.0 to 2.0
99.25 to 100
Lead (Pb), % 0 to 0.020
0
Phosphorus (P), % 0.010 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0