MakeItFrom.com
Menu (ESC)

C19500 Copper vs. ASTM A372 Grade E Steel

C19500 copper belongs to the copper alloys classification, while ASTM A372 grade E steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is ASTM A372 grade E steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.3 to 38
20 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 260 to 360
410 to 570
Tensile Strength: Ultimate (UTS), MPa 380 to 640
650 to 910
Tensile Strength: Yield (Proof), MPa 120 to 600
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
420
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1090
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 200
44
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.4
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 42
20
Embodied Water, L/kg 310
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
500 to 810
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
23 to 32
Strength to Weight: Bending, points 13 to 18
21 to 27
Thermal Diffusivity, mm2/s 58
12
Thermal Shock Resistance, points 13 to 23
19 to 27

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0
0.25 to 0.35
Chromium (Cr), % 0
0.8 to 1.2
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
0
Iron (Fe), % 1.0 to 2.0
97 to 98.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.4 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.25
Phosphorus (P), % 0.010 to 0.35
0 to 0.015
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0

Comparable Variants