MakeItFrom.com
Menu (ESC)

C19500 Copper vs. EN 1.4107 Stainless Steel

C19500 copper belongs to the copper alloys classification, while EN 1.4107 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.3 to 38
18 to 21
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Tensile Strength: Ultimate (UTS), MPa 380 to 640
620 to 700
Tensile Strength: Yield (Proof), MPa 120 to 600
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 200
740
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1090
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 200
27
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
7.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.1
Embodied Energy, MJ/kg 42
30
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
420 to 840
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 20
22 to 25
Strength to Weight: Bending, points 13 to 18
21 to 22
Thermal Diffusivity, mm2/s 58
7.2
Thermal Shock Resistance, points 13 to 23
22 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
11.5 to 12.5
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
0 to 0.3
Iron (Fe), % 1.0 to 2.0
83.8 to 87.2
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0.8 to 1.5
Phosphorus (P), % 0.010 to 0.35
0 to 0.030
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.1 to 1.0
0
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0

Comparable Variants