MakeItFrom.com
Menu (ESC)

C19500 Copper vs. EN 1.4424 Stainless Steel

C19500 copper belongs to the copper alloys classification, while EN 1.4424 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is EN 1.4424 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.3 to 38
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
78
Shear Strength, MPa 260 to 360
520
Tensile Strength: Ultimate (UTS), MPa 380 to 640
800
Tensile Strength: Yield (Proof), MPa 120 to 600
480 to 500

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
960
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1090
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 200
13
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
15
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 42
46
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
580 to 640
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 20
29
Strength to Weight: Bending, points 13 to 18
25
Thermal Diffusivity, mm2/s 58
3.5
Thermal Shock Resistance, points 13 to 23
23

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 19
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
0
Iron (Fe), % 1.0 to 2.0
68.6 to 72.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
1.2 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
4.5 to 5.2
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0.010 to 0.35
0 to 0.035
Silicon (Si), % 0
1.4 to 2.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0