MakeItFrom.com
Menu (ESC)

C19500 Copper vs. EN 1.7720 Steel

C19500 copper belongs to the copper alloys classification, while EN 1.7720 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is EN 1.7720 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.3 to 38
19
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Tensile Strength: Ultimate (UTS), MPa 380 to 640
590
Tensile Strength: Yield (Proof), MPa 120 to 600
340

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
410
Melting Completion (Liquidus), °C 1090
1470
Melting Onset (Solidus), °C 1090
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 200
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 42
30
Embodied Water, L/kg 310
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
97
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
300
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
21
Strength to Weight: Bending, points 13 to 18
20
Thermal Diffusivity, mm2/s 58
11
Thermal Shock Resistance, points 13 to 23
17

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
0.3 to 0.5
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
0 to 0.3
Iron (Fe), % 1.0 to 2.0
96.6 to 98.6
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0.010 to 0.35
0 to 0.030
Silicon (Si), % 0
0 to 0.45
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.1 to 1.0
0
Vanadium (V), % 0
0.22 to 0.3
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0