MakeItFrom.com
Menu (ESC)

C19500 Copper vs. EN 1.8201 Steel

C19500 copper belongs to the copper alloys classification, while EN 1.8201 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is EN 1.8201 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.3 to 38
20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
74
Shear Strength, MPa 260 to 360
390
Tensile Strength: Ultimate (UTS), MPa 380 to 640
630
Tensile Strength: Yield (Proof), MPa 120 to 600
450

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
450
Melting Completion (Liquidus), °C 1090
1500
Melting Onset (Solidus), °C 1090
1450
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 200
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
7.0
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.7
2.5
Embodied Energy, MJ/kg 42
36
Embodied Water, L/kg 310
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
530
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
22
Strength to Weight: Bending, points 13 to 18
20
Thermal Diffusivity, mm2/s 58
11
Thermal Shock Resistance, points 13 to 23
18

Alloy Composition

Aluminum (Al), % 0 to 0.020
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
1.9 to 2.6
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
0
Iron (Fe), % 1.0 to 2.0
93.6 to 96.2
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.1 to 0.6
Molybdenum (Mo), % 0
0.050 to 0.3
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0.010 to 0.35
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.1 to 1.0
0
Titanium (Ti), % 0
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0