MakeItFrom.com
Menu (ESC)

C19500 Copper vs. EN 1.8509 Steel

C19500 copper belongs to the copper alloys classification, while EN 1.8509 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is EN 1.8509 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.3 to 38
11
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 260 to 360
680
Tensile Strength: Ultimate (UTS), MPa 380 to 640
1130
Tensile Strength: Yield (Proof), MPa 120 to 600
940

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
440
Melting Completion (Liquidus), °C 1090
1450
Melting Onset (Solidus), °C 1090
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 200
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.8
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.6
Embodied Energy, MJ/kg 42
22
Embodied Water, L/kg 310
65

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
2340
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 20
40
Strength to Weight: Bending, points 13 to 18
31
Thermal Diffusivity, mm2/s 58
10
Thermal Shock Resistance, points 13 to 23
33

Alloy Composition

Aluminum (Al), % 0 to 0.020
0.8 to 1.2
Carbon (C), % 0
0.38 to 0.45
Chromium (Cr), % 0
1.5 to 1.8
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
0
Iron (Fe), % 1.0 to 2.0
95.5 to 97.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.4 to 0.7
Molybdenum (Mo), % 0
0.2 to 0.35
Phosphorus (P), % 0.010 to 0.35
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0