MakeItFrom.com
Menu (ESC)

C19500 Copper vs. C19400 Copper

Both C19500 copper and C19400 copper are copper alloys. They have a very high 99% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is C19400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.3 to 38
2.3 to 37
Poisson's Ratio 0.34
0.34
Rockwell Superficial 30T Hardness 66 to 76
59 to 78
Shear Modulus, GPa 44
44
Shear Strength, MPa 260 to 360
210 to 300
Tensile Strength: Ultimate (UTS), MPa 380 to 640
310 to 630
Tensile Strength: Yield (Proof), MPa 120 to 600
98 to 520

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1090
1090
Melting Onset (Solidus), °C 1090
1080
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 200
260
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
58 to 68
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
58 to 69

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 42
40
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
5.5 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
41 to 1140
Stiffness to Weight: Axial, points 7.3
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 12 to 20
9.7 to 20
Strength to Weight: Bending, points 13 to 18
11 to 18
Thermal Diffusivity, mm2/s 58
75
Thermal Shock Resistance, points 13 to 23
11 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
96.8 to 97.8
Iron (Fe), % 1.0 to 2.0
2.1 to 2.6
Lead (Pb), % 0 to 0.020
0 to 0.030
Phosphorus (P), % 0.010 to 0.35
0.015 to 0.15
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0 to 0.2
0.050 to 0.2
Residuals, % 0
0 to 0.2

Comparable Variants