MakeItFrom.com
Menu (ESC)

C19500 Copper vs. C28500 Muntz Metal

Both C19500 copper and C28500 Muntz Metal are copper alloys. They have 58% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is C28500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 2.3 to 38
20
Poisson's Ratio 0.34
0.3
Rockwell B Hardness 71 to 86
150
Shear Modulus, GPa 44
40
Shear Strength, MPa 260 to 360
320
Tensile Strength: Ultimate (UTS), MPa 380 to 640
520
Tensile Strength: Yield (Proof), MPa 120 to 600
380

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
110
Melting Completion (Liquidus), °C 1090
900
Melting Onset (Solidus), °C 1090
890
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 200
100
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
29
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
33

Otherwise Unclassified Properties

Base Metal Price, % relative 31
22
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 42
46
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
94
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
700
Stiffness to Weight: Axial, points 7.3
7.3
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 12 to 20
18
Strength to Weight: Bending, points 13 to 18
18
Thermal Diffusivity, mm2/s 58
33
Thermal Shock Resistance, points 13 to 23
17

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
57 to 59
Iron (Fe), % 1.0 to 2.0
0 to 0.35
Lead (Pb), % 0 to 0.020
0 to 0.25
Phosphorus (P), % 0.010 to 0.35
0
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0 to 0.2
39.5 to 43
Residuals, % 0
0 to 0.9