MakeItFrom.com
Menu (ESC)

C19500 Copper vs. C63200 Bronze

Both C19500 copper and C63200 bronze are copper alloys. They have 82% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is C63200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.3 to 38
17 to 18
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 71 to 86
88
Shear Modulus, GPa 44
44
Shear Strength, MPa 260 to 360
390 to 440
Tensile Strength: Ultimate (UTS), MPa 380 to 640
640 to 710
Tensile Strength: Yield (Proof), MPa 120 to 600
310 to 350

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 200
230
Melting Completion (Liquidus), °C 1090
1060
Melting Onset (Solidus), °C 1090
1040
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 200
35
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 42
55
Embodied Water, L/kg 310
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
95 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
400 to 510
Stiffness to Weight: Axial, points 7.3
7.9
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 12 to 20
21 to 24
Strength to Weight: Bending, points 13 to 18
20 to 21
Thermal Diffusivity, mm2/s 58
9.6
Thermal Shock Resistance, points 13 to 23
22 to 24

Alloy Composition

Aluminum (Al), % 0 to 0.020
8.7 to 9.5
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
78.8 to 82.6
Iron (Fe), % 1.0 to 2.0
3.5 to 4.3
Lead (Pb), % 0 to 0.020
0 to 0.020
Manganese (Mn), % 0
1.2 to 2.0
Nickel (Ni), % 0
4.0 to 4.8
Phosphorus (P), % 0.010 to 0.35
0
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0
0 to 0.5