MakeItFrom.com
Menu (ESC)

C19500 Copper vs. C66900 Brass

Both C19500 copper and C66900 brass are copper alloys. They have 64% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is C66900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 2.3 to 38
1.1 to 26
Poisson's Ratio 0.34
0.32
Rockwell B Hardness 71 to 86
65 to 100
Rockwell Superficial 30T Hardness 66 to 76
60 to 88
Shear Modulus, GPa 44
45
Shear Strength, MPa 260 to 360
290 to 440
Tensile Strength: Ultimate (UTS), MPa 380 to 640
460 to 770
Tensile Strength: Yield (Proof), MPa 120 to 600
330 to 760

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
150
Melting Completion (Liquidus), °C 1090
860
Melting Onset (Solidus), °C 1090
850
Specific Heat Capacity, J/kg-K 390
400
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
3.8

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 8.9
8.2
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 42
46
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
4.6 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
460 to 2450
Stiffness to Weight: Axial, points 7.3
8.1
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 12 to 20
15 to 26
Strength to Weight: Bending, points 13 to 18
16 to 23
Thermal Shock Resistance, points 13 to 23
14 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
62.5 to 64.5
Iron (Fe), % 1.0 to 2.0
0 to 0.25
Lead (Pb), % 0 to 0.020
0 to 0.050
Manganese (Mn), % 0
11.5 to 12.5
Phosphorus (P), % 0.010 to 0.35
0
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0 to 0.2
22.5 to 26
Residuals, % 0
0 to 0.2

Comparable Variants