MakeItFrom.com
Menu (ESC)

C19500 Copper vs. N06920 Nickel

C19500 copper belongs to the copper alloys classification, while N06920 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is N06920 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.3 to 38
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
82
Shear Strength, MPa 260 to 360
500
Tensile Strength: Ultimate (UTS), MPa 380 to 640
730
Tensile Strength: Yield (Proof), MPa 120 to 600
270

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1090
1500
Melting Onset (Solidus), °C 1090
1440
Specific Heat Capacity, J/kg-K 390
440
Thermal Conductivity, W/m-K 200
11
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
55
Density, g/cm3 8.9
8.6
Embodied Carbon, kg CO2/kg material 2.7
9.4
Embodied Energy, MJ/kg 42
130
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
230
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
180
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 12 to 20
24
Strength to Weight: Bending, points 13 to 18
21
Thermal Diffusivity, mm2/s 58
2.8
Thermal Shock Resistance, points 13 to 23
19

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23
Cobalt (Co), % 0.3 to 1.3
0 to 5.0
Copper (Cu), % 94.9 to 98.6
0
Iron (Fe), % 1.0 to 2.0
17 to 20
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
36.9 to 53.5
Phosphorus (P), % 0.010 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.1 to 1.0
0
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0