MakeItFrom.com
Menu (ESC)

C19500 Copper vs. N08925 Stainless Steel

C19500 copper belongs to the copper alloys classification, while N08925 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is N08925 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.3 to 38
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
80
Shear Strength, MPa 260 to 360
470
Tensile Strength: Ultimate (UTS), MPa 380 to 640
680
Tensile Strength: Yield (Proof), MPa 120 to 600
340

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1090
1410
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 200
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 2.7
6.2
Embodied Energy, MJ/kg 42
84
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
250
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
280
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 20
23
Strength to Weight: Bending, points 13 to 18
21
Thermal Diffusivity, mm2/s 58
3.5
Thermal Shock Resistance, points 13 to 23
15

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
0.8 to 1.5
Iron (Fe), % 1.0 to 2.0
42.7 to 50.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0.010 to 0.35
0 to 0.045
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0