MakeItFrom.com
Menu (ESC)

C19500 Copper vs. R56401 Titanium

C19500 copper belongs to the copper alloys classification, while R56401 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19500 copper and the bottom bar is R56401 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.3 to 38
9.1
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 44
40
Shear Strength, MPa 260 to 360
560
Tensile Strength: Ultimate (UTS), MPa 380 to 640
940
Tensile Strength: Yield (Proof), MPa 120 to 600
850

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
340
Melting Completion (Liquidus), °C 1090
1610
Melting Onset (Solidus), °C 1090
1560
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 200
7.1
Thermal Expansion, µm/m-K 17
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
36
Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 2.7
38
Embodied Energy, MJ/kg 42
610
Embodied Water, L/kg 310
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
83
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
3440
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 12 to 20
59
Strength to Weight: Bending, points 13 to 18
48
Thermal Diffusivity, mm2/s 58
2.9
Thermal Shock Resistance, points 13 to 23
67

Alloy Composition

Aluminum (Al), % 0 to 0.020
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
0
Hydrogen (H), % 0
0 to 0.012
Iron (Fe), % 1.0 to 2.0
0 to 0.25
Lead (Pb), % 0 to 0.020
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0.010 to 0.35
0
Tin (Sn), % 0.1 to 1.0
0
Titanium (Ti), % 0
88.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0