MakeItFrom.com
Menu (ESC)

C19500 Copper vs. ZK40A Magnesium

C19500 copper belongs to the copper alloys classification, while ZK40A magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C19500 copper and the bottom bar is ZK40A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
45
Elongation at Break, % 2.3 to 38
4.2
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
17
Shear Strength, MPa 260 to 360
160
Tensile Strength: Ultimate (UTS), MPa 380 to 640
280
Tensile Strength: Yield (Proof), MPa 120 to 600
260

Thermal Properties

Latent Heat of Fusion, J/g 210
340
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1090
600
Melting Onset (Solidus), °C 1090
540
Specific Heat Capacity, J/kg-K 390
970
Thermal Conductivity, W/m-K 200
110
Thermal Expansion, µm/m-K 17
26

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 56
27
Electrical Conductivity: Equal Weight (Specific), % IACS 50 to 57
130

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.9
1.8
Embodied Carbon, kg CO2/kg material 2.7
24
Embodied Energy, MJ/kg 42
160
Embodied Water, L/kg 310
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 110
12
Resilience: Unit (Modulus of Resilience), kJ/m3 59 to 1530
740
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
65
Strength to Weight: Axial, points 12 to 20
43
Strength to Weight: Bending, points 13 to 18
53
Thermal Diffusivity, mm2/s 58
62
Thermal Shock Resistance, points 13 to 23
17

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Cobalt (Co), % 0.3 to 1.3
0
Copper (Cu), % 94.9 to 98.6
0
Iron (Fe), % 1.0 to 2.0
0
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0
94.2 to 96.1
Phosphorus (P), % 0.010 to 0.35
0
Tin (Sn), % 0.1 to 1.0
0
Zinc (Zn), % 0 to 0.2
3.5 to 4.5
Zirconium (Zr), % 0
0.45 to 1.0
Residuals, % 0
0 to 0.3