MakeItFrom.com
Menu (ESC)

C19700 Copper vs. AISI 301LN Stainless Steel

C19700 copper belongs to the copper alloys classification, while AISI 301LN stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.4 to 13
23 to 51
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 240 to 300
450 to 670
Tensile Strength: Ultimate (UTS), MPa 400 to 530
630 to 1060
Tensile Strength: Yield (Proof), MPa 330 to 520
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
890
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 250
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 41
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
180 to 1520
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 16
22 to 38
Strength to Weight: Bending, points 14 to 16
21 to 30
Thermal Diffusivity, mm2/s 73
4.0
Thermal Shock Resistance, points 14 to 19
14 to 24

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
0
Iron (Fe), % 0.3 to 1.2
70.7 to 77.9
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Nickel (Ni), % 0 to 0.050
6.0 to 8.0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0.1 to 0.4
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0