MakeItFrom.com
Menu (ESC)

C19700 Copper vs. AISI 316N Stainless Steel

C19700 copper belongs to the copper alloys classification, while AISI 316N stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is AISI 316N stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.4 to 13
9.0 to 39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 240 to 300
420 to 690
Tensile Strength: Ultimate (UTS), MPa 400 to 530
620 to 1160
Tensile Strength: Yield (Proof), MPa 330 to 520
270 to 870

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
940
Melting Completion (Liquidus), °C 1090
1440
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 250
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
19
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.9
Embodied Energy, MJ/kg 41
53
Embodied Water, L/kg 310
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
95 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
180 to 1880
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 16
22 to 41
Strength to Weight: Bending, points 14 to 16
20 to 31
Thermal Diffusivity, mm2/s 73
4.1
Thermal Shock Resistance, points 14 to 19
14 to 26

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
0
Iron (Fe), % 0.3 to 1.2
61.9 to 71.9
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.050
10 to 14
Nitrogen (N), % 0
0.1 to 0.16
Phosphorus (P), % 0.1 to 0.4
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0