MakeItFrom.com
Menu (ESC)

C19700 Copper vs. ASTM A285 Carbon Steel

C19700 copper belongs to the copper alloys classification, while ASTM A285 carbon steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is ASTM A285 carbon steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.4 to 13
30 to 34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 240 to 300
250 to 290
Tensile Strength: Ultimate (UTS), MPa 400 to 530
380 to 450
Tensile Strength: Yield (Proof), MPa 330 to 520
190 to 230

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1090
1470
Melting Onset (Solidus), °C 1040
1420 to 1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 250
53
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
18
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
110
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
94 to 150
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 16
13 to 16
Strength to Weight: Bending, points 14 to 16
15 to 17
Thermal Diffusivity, mm2/s 73
14
Thermal Shock Resistance, points 14 to 19
12 to 14