MakeItFrom.com
Menu (ESC)

C19700 Copper vs. EN 1.3955 Stainless Steel

C19700 copper belongs to the copper alloys classification, while EN 1.3955 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is EN 1.3955 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.4 to 13
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 400 to 530
520
Tensile Strength: Yield (Proof), MPa 330 to 520
220

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
930
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 250
15
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
16
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 41
45
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
95
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
130
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 16
18
Strength to Weight: Bending, points 14 to 16
18
Thermal Diffusivity, mm2/s 73
4.1
Thermal Shock Resistance, points 14 to 19
15

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16.5 to 18.5
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
0
Iron (Fe), % 0.3 to 1.2
65.5 to 73.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.050
10 to 12
Phosphorus (P), % 0.1 to 0.4
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0