MakeItFrom.com
Menu (ESC)

C19700 Copper vs. EN 1.4662 Stainless Steel

C19700 copper belongs to the copper alloys classification, while EN 1.4662 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is EN 1.4662 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.4 to 13
28
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
79
Shear Strength, MPa 240 to 300
520 to 540
Tensile Strength: Ultimate (UTS), MPa 400 to 530
810 to 830
Tensile Strength: Yield (Proof), MPa 330 to 520
580 to 620

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
1090
Melting Completion (Liquidus), °C 1090
1430
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 250
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
16
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 41
45
Embodied Water, L/kg 310
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
210
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
840 to 940
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 12 to 16
29 to 30
Strength to Weight: Bending, points 14 to 16
25
Thermal Diffusivity, mm2/s 73
3.9
Thermal Shock Resistance, points 14 to 19
22

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
0.1 to 0.8
Iron (Fe), % 0.3 to 1.2
62.6 to 70.2
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
2.5 to 4.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0 to 0.050
3.0 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0.1 to 0.4
0 to 0.035
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0