MakeItFrom.com
Menu (ESC)

C19700 Copper vs. EN 1.7375 Steel

C19700 copper belongs to the copper alloys classification, while EN 1.7375 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is EN 1.7375 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.4 to 13
20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Shear Strength, MPa 240 to 300
380
Tensile Strength: Ultimate (UTS), MPa 400 to 530
620
Tensile Strength: Yield (Proof), MPa 330 to 520
400

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
460
Melting Completion (Liquidus), °C 1090
1470
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 250
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
3.9
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 41
23
Embodied Water, L/kg 310
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
110
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
420
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 16
22
Strength to Weight: Bending, points 14 to 16
20
Thermal Diffusivity, mm2/s 73
11
Thermal Shock Resistance, points 14 to 19
18

Alloy Composition

Aluminum (Al), % 0
0.010 to 0.040
Carbon (C), % 0
0.1 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
0 to 0.25
Iron (Fe), % 0.3 to 1.2
94.5 to 96.7
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0.3 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.050
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0.1 to 0.4
0 to 0.015
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0