MakeItFrom.com
Menu (ESC)

C19700 Copper vs. EN 1.7378 Steel

C19700 copper belongs to the copper alloys classification, while EN 1.7378 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is EN 1.7378 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.4 to 13
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Shear Strength, MPa 240 to 300
430
Tensile Strength: Ultimate (UTS), MPa 400 to 530
700
Tensile Strength: Yield (Proof), MPa 330 to 520
490

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
460
Melting Completion (Liquidus), °C 1090
1470
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 250
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
4.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.3
Embodied Energy, MJ/kg 41
33
Embodied Water, L/kg 310
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
110
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
630
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 12 to 16
25
Strength to Weight: Bending, points 14 to 16
22
Thermal Diffusivity, mm2/s 73
10
Thermal Shock Resistance, points 14 to 19
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0015 to 0.0070
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
2.2 to 2.6
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
0
Iron (Fe), % 0.3 to 1.2
94.6 to 96.1
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0.3 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0.1 to 0.4
0 to 0.020
Silicon (Si), % 0
0.15 to 0.45
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0.050 to 0.1
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0