MakeItFrom.com
Menu (ESC)

C19700 Copper vs. EN 2.4650 Nickel

C19700 copper belongs to the copper alloys classification, while EN 2.4650 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is EN 2.4650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.4 to 13
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
80
Shear Strength, MPa 240 to 300
730
Tensile Strength: Ultimate (UTS), MPa 400 to 530
1090
Tensile Strength: Yield (Proof), MPa 330 to 520
650

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1010
Melting Completion (Liquidus), °C 1090
1400
Melting Onset (Solidus), °C 1040
1350
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 250
12
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
80
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
10
Embodied Energy, MJ/kg 41
140
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
320
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
1030
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 12 to 16
36
Strength to Weight: Bending, points 14 to 16
28
Thermal Diffusivity, mm2/s 73
3.1
Thermal Shock Resistance, points 14 to 19
33

Alloy Composition

Aluminum (Al), % 0
0.3 to 0.6
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0 to 0.050
19 to 21
Copper (Cu), % 97.4 to 99.59
0 to 0.2
Iron (Fe), % 0.3 to 1.2
0 to 0.7
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0 to 0.6
Molybdenum (Mo), % 0
5.6 to 6.1
Nickel (Ni), % 0 to 0.050
46.9 to 54.2
Phosphorus (P), % 0.1 to 0.4
0 to 0.020
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.0070
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
1.9 to 2.4
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0