MakeItFrom.com
Menu (ESC)

C19700 Copper vs. EN 2.4668 Nickel

C19700 copper belongs to the copper alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.4 to 13
14
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
75
Shear Strength, MPa 240 to 300
840
Tensile Strength: Ultimate (UTS), MPa 400 to 530
1390
Tensile Strength: Yield (Proof), MPa 330 to 520
1160

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1090
1460
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 250
13
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
75
Density, g/cm3 8.9
8.3
Embodied Carbon, kg CO2/kg material 2.6
13
Embodied Energy, MJ/kg 41
190
Embodied Water, L/kg 310
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
180
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
3490
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 12 to 16
46
Strength to Weight: Bending, points 14 to 16
33
Thermal Diffusivity, mm2/s 73
3.5
Thermal Shock Resistance, points 14 to 19
40

Alloy Composition

Aluminum (Al), % 0
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0
0.020 to 0.080
Chromium (Cr), % 0
17 to 21
Cobalt (Co), % 0 to 0.050
0 to 1.0
Copper (Cu), % 97.4 to 99.59
0 to 0.3
Iron (Fe), % 0.3 to 1.2
11.2 to 24.6
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0 to 0.050
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0.1 to 0.4
0 to 0.015
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0.6 to 1.2
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0