MakeItFrom.com
Menu (ESC)

C19700 Copper vs. EN 2.4669 Nickel

C19700 copper belongs to the copper alloys classification, while EN 2.4669 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is EN 2.4669 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.4 to 13
16
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 240 to 300
680
Tensile Strength: Ultimate (UTS), MPa 400 to 530
1110
Tensile Strength: Yield (Proof), MPa 330 to 520
720

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
960
Melting Completion (Liquidus), °C 1090
1380
Melting Onset (Solidus), °C 1040
1330
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 250
12
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 30
60
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 2.6
10
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
160
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
1380
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 12 to 16
37
Strength to Weight: Bending, points 14 to 16
28
Thermal Diffusivity, mm2/s 73
3.1
Thermal Shock Resistance, points 14 to 19
33

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0 to 0.050
0 to 1.0
Copper (Cu), % 97.4 to 99.59
0 to 0.5
Iron (Fe), % 0.3 to 1.2
5.0 to 9.0
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Nickel (Ni), % 0 to 0.050
65.9 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0.1 to 0.4
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
2.3 to 2.8
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0