MakeItFrom.com
Menu (ESC)

C19700 Copper vs. EN 2.4816 Nickel

C19700 copper belongs to the copper alloys classification, while EN 2.4816 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C19700 copper and the bottom bar is EN 2.4816 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.4 to 13
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Shear Strength, MPa 240 to 300
470
Tensile Strength: Ultimate (UTS), MPa 400 to 530
700
Tensile Strength: Yield (Proof), MPa 330 to 520
270

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1150
Melting Completion (Liquidus), °C 1090
1370
Melting Onset (Solidus), °C 1040
1320
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 250
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86 to 88
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 89
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
55
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
9.0
Embodied Energy, MJ/kg 41
130
Embodied Water, L/kg 310
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 49
190
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1160
190
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 12 to 16
23
Strength to Weight: Bending, points 14 to 16
21
Thermal Diffusivity, mm2/s 73
3.8
Thermal Shock Resistance, points 14 to 19
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.3
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
0 to 0.5
Iron (Fe), % 0.3 to 1.2
6.0 to 10
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Nickel (Ni), % 0 to 0.050
72 to 80
Phosphorus (P), % 0.1 to 0.4
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.3
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0